原子性Atomic[]()
原子性 提供了互斥访问,同一时刻只能有一个线程来对它进行操作
@ThreadSafe
public class ConcurrencyByAtomic {
//请求总数
private static int clientTotal = 10000;
//并发数
private static int threadTotal = 100;
public AtomicInteger count = new AtomicInteger(0);
public static void main(String[] args) {
ConcurrencyByAtomic test = new ConcurrencyByAtomic();
// 使用并发库,创建缓存的线程池
ExecutorService executor = Executors.newCachedThreadPool();
// 创建一个Semaphore信号量,并设置最大并发数为
final Semaphore semaphore = new Semaphore(threadTotal);
//希望所有线程结束再返回主线程,所以是请求总数
final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);
// 创建10个任务,上面的缓存线程池就会创建10个对应的线程去执行
for (int i = 0; i < clientTotal; i++) {
final int NO = i; // 记录第几个任务
Runnable task =
new Runnable() {
@Override
public void run() {
try {
semaphore.acquire(); // 获取许可
test.add();
semaphore.release(); // 释放许可
} catch (InterruptedException e) {
e.printStackTrace();
}
countDownLatch.countDown();
}
};
executor.submit(task); // 执行任务
}
try {
System.out.println("等待线程池任务执行完毕...");
countDownLatch.await();
System.out.println("线程池执行任务已经执行完毕");
System.out.println("继续执行主线程");
} catch (InterruptedException e) {
e.printStackTrace();
}
if (!executor.isShutdown()) {
executor.shutdown();
System.out.println("shutdown ...");
}
int count = test.count.get();
System.out.println(count);
}
private void add() {
count.incrementAndGet();
// count.getAndIncrement();
}
}

源码分析

- 这里循环等主内存和工作内存变量一致时在执行后续操作